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Transmission Kikuchi line patterns from wedge-shaped crystals of natural spinel have been studied. 
Especially near line intersections, extensive contrast anomalies attributable to multiple-beam interac- 
tions were observed, such as enhanced and diminished line segments, split lines and line segments 
which can not be indexed as ordinary Kikuchi lines. Several effects sometimes combine to form ex- 
tensive patterns related to the Kikuchi envelope. The observed patterns are compared with calculated 
line contrast using several interacting beams. Most of the effects can be explained through three inter- 
acting beams; hence, three-beam effects in Kikuchi patterns are discussed in some detail. General 
rules for the dependence of contrast anomalies on signs and sizes of the Fourier potentials are derived. 
It is pointed out that, because of the wide range of diffraction conditions recorded in one exposure 
and the elimination of thickness-dependent oscillations, Kikuchi patterns give a very useful picture of 
the angular extent of the most important dynamic interactions. Applications of the results in connection 
with other diffraction techniques are discussed. 
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Introduction 

Kikuchi patterns are of considerable interest to the 
electron diffractionist. They can be used for accurate 
determination of crystal orientation and lattice con- 
stants (Uyeda, 1965; Hoier, 1969); also, they represent 
an interesting diffraction phenomenon which may 
yield insight into dynamic interactions as well as into 
the nature of diffuse scattering (see e.g. Gjonnes, 1966). 

Hence, a detailed understanding of the deviations of 
position and contrast of Kikuchi lines from the predic- 
tions of simple theory - geometrical or two beam - is 
desirable. Such deviations have been reported by sev- 
eral investigators (Shinohara, 1932; Pfister, 1953; 
Menzel-Kopp, 1962; Gjonnes & Watanabe, 1966)and 
are to a large extent recognized as arising from mul- 
tiple beam interactions. In fact, Shinohara (1932) had 
already introduced three-beam considerations in order 
to explain the Kikuchi envelope. Very recently, Wat- 
anabe, Uyeda & Fukuhara (1968) have demonstrated 
how multiple-beam effects in Kikuchi patterns can be 
used to obtain accurate values for Fourier potentials. 

Whereas multiple beam interactions in spot patterns 
and in convergent beam patterns have been studied in 
considerable detail, less effort appears to have been 
put into theoretical explanation of contrast details 
in Kikuchi patterns, despite the considerable simplifica- 
tion in calculation procedure one may gain from the 
thickness average inherent in Kikuchi line contrast. 

The aim of the present work has been to explain, 
through multiple-beam calculations, various effects ob- 
served in Kikuchi patterns from single crystals of 
natural spinel. The emphasis has been on typical con- 
trast anomalies resulting from multiple-beam interac- 
tions and on the relationship between contrast effects 
in the different regions coupled through such interac- 
tions. Spinel was chosen as the material partly because 

it permitted a study of the effect of the signs of structure 
factors. 

Experimental results 

Kikuchi patterns from small chips of natural spinel, 
MgA1204, were obtained in the selected area position 
using a JEM 7 electron microscope. A variety of 
multiple-beam effects were recognized in the patterns, 
such as anomalies in line contrast and position; black 
and white dots at the lines; split spots at line intersec- 
tions; displaced line segments. The various effects often 
combine to form complicated curved figures, of which 
the envelope can be seen as one example. 

Enhanced or diminished contrast at certain segments 
of a Kikuchi line is a frequently occurring anomaly, 
typical examp__les of which are shown in Fig. 1. The 
excess line 731 appears with almost vanishing contrast 
in the corner outside the excess lines 2 ~  and 511.* 
Similar contrast changes are seen on the 97--3 excess 
line. The vanishing of contrast under rather similar 
conditions was studied by Pfister (1953) and Menzel- 
Kopp (1962) who formulated a rule for the contrast 
changes in terms of angles between the scattering 
vectors operating. The contrast changes in Fig. 1 are 
consistent with this rule. 

Inside the 511 line there is strong enhancement of 
contrast of the 73"-] and 97--3 lines, particularly near to 
their intersections with 511. Here the 731" line is split, 
with small tails pointing approximately in the direction 
of the 2 ~  line. At the corresponding place on the 24-2 
line, viz. at the 511, 24-2 intersection, this line is also 
split. Similar gaps and enhanced spots were observed 
at a number of line intersections. 

* 'Outside the line' here refers to that side of the line which 
is opposite to the other line of the pair. Similarly 'inside a line' 
refers to the side which is between the two lines of a pair. 
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A more complicated pattern is reproduced in Fig. 2, 
where the dominant lines belong to the [012] zone. The 
features to be discussed are shown in Fig. 3. There are 
several enhanced segments, notably on the +(4n+ 
2,4,2) lines, e.g. on the 6-42 excess line outside 400 and 
242. Inside these lines the contrast of ~ is reduced. 
Along the + 242 lines there are contrast anomalies 
changing from enhancement to reduction at several 
intersections. Starting from the left in Fig.2, the 242 
excess line contrast is enhanced outside 400, reduced 
immediately inside this line, enhanced again on ap- 
proaching 24-2 and reduced inside the 242 line. Similar 
contrast changes are seen along the corresponding 
deficient line. These contrast changes were found to 
disagree with the rule given by Menzel-Kopp. 

Displaced-line* segments with displacement + 400, 
i.e. + 642' and + 242' in Figs.2 and 3, correspond to 
the enhanced segments. The displaced segments appear 
inside the strong 400 band, in contrast to the similar 
line segments reported by Gjonnes & Watanabe (1966) 
who observed them outside the strong 200 band in 
MgO. 

It should also be pointed out that the enhanced seg- 
ments on the 4n + 2, 4, 2 lines do not form an envelope. 
Ordinary en_v_elopes can be seen, however, e.g. 4n, 8,4 
and 2n+ 1,9,5 in Fig.2 and 2n+1,9,1 in Fig.4. 

Usually, a displaced-line segment is found to con- 
tinue into an enhanced segment of an ordinary Kikuchi 
line, as with 8-~ '  and 484 in Fig.2 (see Fig. 3). How- 
ever, in some cases a gap appears where the two seg- 
ments meet, as between 242' and 6-~ or between ).4-2 
and 642'. 

The 084 line appears to be doubled inside the 400 
band. This is a spurious effect, involving lines belonging 
to different zones and is discussed elsewhere (Gjonnes, 
Hoier & Watanabe, 1968). 

Calculations and discussion 

Theoretical expressions for Kikuchi line contrast have 
been given by many authors; those given previously 
by one of us (Gjonnes, 1966) include the effect of Bragg 
scattering of the incident beam as well as scattering 
between the coupled diffuse beams. The general expres- 
sion consists of many terms belonging to a set of form 
factors for the diffuse scattering, viz: (If(s)12), 
( f ( s ) f*(s+h))  etc. where s is the scattering vector and 
h/2n are reciprocal lattice vectors. However, the present 
study was focused on such contrast effects which 
were independent of the diffraction conditions of the 
incident beam. In general, we have sought to avoid 
situations where strong Bragg reflexions occur and 
also tried to stick to cases where the diffuse scattering 
from the direct beam is much stronger near one of the 
coupled beams than near to the others. Then the main 

* The term 'displaced line' was introduced by Gjonnes & 
Watanabe (1966); their notation, viz. hkl" for a displaced line 
is used below, 

features in the pattern are given by the If(s)l 2 term. 
Thickness dependent effects can be neglected, since the 
specimens were wedge-shaped. For a qualitative com- 
parison with observed patterns we may thus use the 
simplified contrast expressions: 

ISool 2 = Z  -oo'~'(~ 2 (deficient contrast) 
J 

IShol2=2: IS~I z (excess contrast), 
J 

where Sho(Z)= X S(h°o exp (i ~j z) are the amplitudes of 
i 

the different beams h at a distance z below the level 
where diffuse scattering takes place. The index j 
denotes the branches of the dispersion surface. ~j are 
the anpassungen. The bar denotes the usual thickness 
average. 

Calculations of contrast were carried out on a 
CDC 3300 computer using a diagonalization method 
for solution of the dynamical equations. A large number 
of interacting beams could be handled in this way; it 
was found by trial, however, that the majority of the 
observed multiple-beam effects were surprisingly well 
described by three-beam interactions. Hence, it may 
be appropriate first to present a qualitative discussion 
of the contrast based on three-beam interactions. 

A thorough analytical discussion of the three-beam 
case was given by Kambe (1957), who explained 
observed effects in Kossel-MOllenstedt patterns. In 
many practical cases one of the three Fourier potentials, 
Vh_g connecting the three beams o, h and g may be 
taken to be appreciably larger than the others; in fact, 
our numerical calculations revealed that qualitative 
conclusions drawn from this simplified case have quite 
extensive validity. 

The following discussion may be seen as summariz- 
ing the results of these calculations, of which examples 
will be given at the end of this chapter. 
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Fi8.3. Schematical drawing of contrast anomalies in Fig.2. 
[012] zone; for clarity only half the lines are shown. 



J. G J O N N E S  AND R. H O I E R  597 

A typical three-beam situation is represented in 
Fig. 5(a) which shows three coupled Kikuchi line inter- 
sections, To, T~ and T h. T " " _ h%couphng]V h g is assumed 
to be strong and the other Fourier potentials weak. 
The Figure thus includes the case of intersecting weak 
lines with strong coupling between them (To) as well 
as intersections, Tg and T h, between a weak and a 
strong line. 

The effects of the strong coupling on position and 
contrast of the weaker lines may profitably be related 
to the dispersion surface. Fig.5(b) shows a section 
( L - L ) ,  near Tg, of the three beam dispersion surface. 
The three straight lines, o, g and g -  h, represent spheres 
with radii equal to the length of the wave vector 

,a B*cc 

h 

h - g  

/ @  

t &  

g - h  

AhBhC h ~ BgCg ~I 

Ii 
(o) 

0 

G1 K1 

(b) 

Fig. 5. (a) Schematical drawing of enhanced, diminished and dis- 
placed line segments in the three-beam case; P = Vg Vh Vh-g > O, 
Vh-g is the largest Fourier potential. Enhanced and di- 
minished line segments are shown by heavy and dashed lines, 
respectively. The sections An, Bn and Cn, n = o, g, h, indicate 
the positions of the contrast profiles given in Fig.8. (b) Dis- 
perslon surface coresponding to the section L - L .  

around each of the reciprocal lattice points o, g and 
g - h .  The o-beam is taken to be in the vicinity of T r 
The same dispersion surface can, of course, be used in 
regions near To and Th as well, changing the o-line, or 
free electron sphere, accordingly. 

Starting with line positions, let us now proceed to a 
qualitative discussion of three-beam effects near Kiku- 
chi line intersections. The positions of the weaker lines 
are found to be nearly independent of the weaker 
potentials and to be given by the intersections between 
the weak beam spheres [e.g. g in Fig.5(b)] and the 
two-beam dispersion surfaces formed by the strong 
coupling (i.e. between o and g - h ) .  In this way Gx and 
G2 indicate the positions of the line g and the displaced 
line h', respectively, h' - which we might also call an 
umweganregung line - is constructed by translating the 
line h by a vector g - h  (Gjonnes & Watanabe, 1966). 
The displaced lines are thus related to intersections 
between the sphere around a weak or moderate reflex- 
ion and a strongly excited branch of the dispersion 
surface, other than the one closest to the free-electron 
sphere. 

From the hyperbolic shape of the two-beam disper- 
sion surface, it follows that the weak lines in the region 
around To will be distorted into two branches of a 
hyperbola with the two lines fg and h as asymptotes - 
one of which is more strongly excited, as we shall see. 
This is reflected in the other intersections as hyperbolae 
with one line and one displaced line, e.g. g and h' at 
Tg, as asymptotes. Frequently the displaced line 
segment is quite short and appears only as a tail to 
the enhanced part of the weak line at the intersection. 
An example can be seen at the 737, 511 intersection in 
Fig. 1. Actually, there are two tails which can just be 
seen to approach the direction of the 24-2 line. Here 
511 is the coupling reflexion; the existence of tails 
along the displaced line on both sides of 511 can be 
explained from the sizes of the Fourier potentials. The 
more extensive displaced segments shown in Figs.2 
and 3 are pointed out in the previous section. 

The above discussion of line position is independent 
of sign and size of the smaller Fourier coefficients Vg 
and Vh. However, the contrast of the lines is strongly 
influenced by these factors. Let us now turn to this 
question. 

In the two-beam case the contrast, or width, of a 
Kikuchi line is determined by the Fourier potential 
Vh and is thus related to the gap width, or minimum 
distance, between the branches of the dispersion surface. 
Extensive calculations have shown this to be the case 
also when more beams are excited (see Fig.9) and 
here we shall discuss line contrast in such situations 
in terms of this gap. Referring again to Fig. 5(/)), one 
sees that of the two gaps, which in the absence of the 
strong coupling Vh_g would be 2 Vg and 2 Vh respectively, 
one is reduced, G1, and the other is enhanced, G2, 
relative to the two beam values. The situation in Fig. 
5(b), with the increased gap at the upper branch is 
obtained when the product P =  VhVgVh_~>O. When 
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P < 0 the situation is reversed, with the increased gap 
appearing at the lower branch [Fig. 6(b)]. 

In this way the contrast anomalies indicated in 
Fig. 5(a) are readily explained; note that the dispersion 
surface, [Fig.5(b)] can be used also inside the h - g  
line, near T h, and near the fg,fi intersection, T o. 

The contrast of the displaced line can also be pre- 
dicted. This contrast depends on two factors, viz" 
the particular branch which produces the line must be 
appreciably excited and there must be an increased gap 
associated with the displaced line. When the coupling 
potential Vh-~ is strong, both of these conditions can 
be satisfied. Fig.5(b) shows an increased gap at Gz 
indicating that the displaced line h' will appear with 
appreciable contrast outside the g - h  line. Conversely 
no displaced line is expected at the inside of line g - h .  

The contrast anomalies near Tg and Th in Fig. 5(a) 
follow from the discussion above. Note that the 
enhanced hyperbola branches with one Kikuchi line 
and one displaced line as asymptotes will have the 
same type of contrast - excess or deficient. The com- 
plemententary nature of contrast thus leads to en- 
hanced contrast for one branch of the corresponding 
hyperbola near To and reduced contrast for the other 
branch, as shown in Fig.5(a). The contrast in this 
region can, of course, also be deduced from a disper- 
sion surface construction similar to Fig. 5(b), but with 
the o-fine shifted to the g-line position. Two examples 
of contrast changes at intersections between weak and 
strong lines are seen in Fig. l ;  the product P =  
VT~iV2r~V m o r  Vg~]V4~7~V511 is in both cases positive. 

When the product P is less than zero, the conditions 
for enhancement and reduction of contrast are reversed 
and become as shown in Fig. 6. P < 0 applies for several 
three-beam cases as seen in Fig. 2. From the symmetry 
of the spinel structure it follows that V642Vz4zV4oo < O, 
hence displaced + 642' and + 242' lines appear inside 
the 400 banci. These segments are coupled to enhanced 
segments of the + 642 and + 242 lines outside the band. 

We can now formulate rules for the occurrence of 
the enhanced or reduced contrast and for the appear- 
ance of displaced line segments in three-beam cases. 

If the product P =  VgVhVh_g > 0, a line g will appear 
with enhanced contrast at the side of the strong line 
( g - h )  where the excitation error ~g--h is negative and 
with reduced contrast at the other side of the ( g - h )  
fine. A displaced g' line segment will appear at the side 
of the strong line ( h - g )  where ~h--g is positive. 

I f P  < 0, the line g will appear with enhanced contrast 
at the side of g - h  where ~ - h  is positive and with 
reduced contrast where ~,--h is negative. The displaced 
g' segment will then appear where ffh-g is negative. 

These rules and their relation to the gap widths of 
the dispersion surface have been substantiated experi- 
mentally and theoretically in a number of three-beam 
cases; the qualitative predictions are often borne out 
even when more interacting beams are present. 

Whereas the nature of the contrast anomalies is 
determined by the signs of the Fourier potentials in- 

volved, the magnitude of the effects depends on the 
relative sizes of the potentials. On varying the Fourier 
potentials in our calculations of dispersion surfaces 
and contrast profiles, we have found that the change 
in contrast of a line g on crossing a strong line g - h  
depends on V h. For a given Vg_ h, the effect on the line 
g will increase with increasing Vh. For a sufficiently 
strong Vh, the split at the intersection will disappear. 
The intersection 73-i,511 in Fig. 1 is typical of a small 
V h (h=24---~. Here the reduced branch of the 731,242' 
hyperbola is also seen, so that a split intersection ap- 
pears. At the 973, 511 intersection no such split occurs 
as might be expected since Vh= V4~ is much larger 

h - g  
Co 

/ To' 
h - 2 g  

g-h  

i 
_ C h ~  ,~ C g ~  

h e ~. 

(a)  

.-~-~ g-h  

K2 G2 

G1 K1 

(b) 

Fig. 6. (a) Schematical drawing of enhanced, diminished and dis- 
placed line segments in the three-beam case for P<0. 
Enhanced and diminished line segments are shown by heavy 
and dashed lines, respectively. The sections Bn and Cn, 
n = o, g, h, indicate the positions of the contrast profiles given 
in Fig. 10. (b) Dispersion surface coresponding to the section 
L-L. 
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than V~ ,  the other potentials being of equal size. 
Another example can be found in the paper of Gjonnes 
& Watanabe (1966), where e.g. the 824 line is missing 
outside the 002 line, where V h = V82z, but is still visible 
outside 002 where V h = Vs26 < 17822. 

Several enhanced segments, especially from lines 
belonging to a layer line in the reciprocal lattice, may 
combine to form extensive patterns, like the Kikuchi 
envelope (Shinohara, 1932). The formation of the en- 
velope is seen from Fig. 5(a). Contrast enhancements 
similar to those appearing at To will appear at the 
h , h - 2 g  line intersection To and so on. In this way the 
relation between the envelope and the network of lines 
and displaced lines occurring around a strong band 
(Gjonnes & Watanabe, 1966) is easily understood. 

More complicated envelopes can also be found. The 
one in Fig.4 is composed of segments from the 
(2n + 1,9,1) lines. The strong coupling is between every 
second line, e.g. 591 and 191 through 400, since 200 
is forbidden. In this case the Fourier potentials are 
Vn~t>O for hkl=(4n+l,9,1) ,  Vn~z<0 for hkl= 
(4n + 3, 9,1) and Vngz = - V~ kt. The structure factor 
products guiding the strong three-beam interactions are 
thus all positive. The segments which would have 
formed the usual envelope are relatively unperturbed, 
whereas a figure with the same direction of curvature 
as in the usual case is formed by segments outside the 
envelope position, e.g. on the inside of the 191, 591 
intersection. At the inside of this enhanced hyperbola 
branch a straight, unperturbed 391 segment should 
appear; this is not well resolved in the pattern, how- 
ever. The 791 potential is very small, and hence this 
line is invisible except in a small region near the inter- 
section 791, 391 where it appears with enhanced con- 
trast. 

It follows from the discussion in connection with 
Fig. 6 that the envelope will not appear if the structure 
factor products, P, are negative. In that case the line 
segments corresponding to the ordinary envelope are 

800 400 400 

b 

J 
;>< 
\ / 

642 64:) 

800 

!'¢ 

24~ 
Fig. 7. The 'inverted envelope' formed by the (4n + 2, 2[, ~) lines 

in Fig. 2 schematically shown, heavy line. Dashed line: nor- 
mal envelope position. 

reduced in contrast and strongly enhanced segments 
will appear outside the envelope. In this way a quite 
different curved figure, which we suggest may be called 
an 'inverted envelope', arises. Such a curve can be 
seen in the pattern of (4n+2,4,2) lines in Fig.2. A 
schematic drawing is given in Fig. 7. 

The Kikuchi line contrast may, of course, be in- 
fluenced by interactions involving more than three 
beams. However, contrast features which depend on 
four or more beam interactions for their qualitative 
explanation were found to be relatively infrequent and 
usually of small extension. An example is the small 
gap where the 642' and enhanced )-42 meet in Fig.2; 
from three-beam considerations alone one would here 
expect these segments to be joined to form a contin- 
uous curve. Contrast calculations for this region are 
given below. 

Let us now consider some examples of numerical 
calculations relating to the observed contrast anomalies. 
Fig. 5 may be taken to represent the observed anomalies 
in Fig. 1, with g = 731, h = 24-2, g -  h = 511 and with the 
incident beam near To. The relative values of the Fou- 
rier potentials V7~i, V~,  V511 are approximately - 1 : 
- 2 :  6, P>0 .  A number of contrast profiles were 
calculated. The profiles reproduced in Fig. 8 correspond 
to the sections An, B, and Cn, n=o,g ,h ,  indicated in 
Fig. 5. Bo is going through the intersection ~,fi while 
A. and C O are at the same distance on each side of 
this intersection. The profiles of the weak + 731 lines 
should be noted especially. These lines appear with 
enhanced contrast inside the 24-2 and 511 bands (Ao 
and Ag in Fig. 8) and diminished contrast outside these 
bands (Co and Cg). The displaced lines are very weak 
and the two maxima in the split 73-i line are less well 
resolved than in the 2 ~  line, in agreement with the 
observations in Fig. 1. 

These anomalies in Kikuchi line contrast and posi- 
tion can all be inferred from the corresponding dis- 
persion surface, Fig. 8(d), as outlined earlier in this 
section. The simple relation between gap width at the 
dispersion surface and line contrast, as given by the 
half width, was tested by calculations performed for 
various combinations of Fourier potentials for sec- 
tions of the type A and C. The results, which are sum- 
marized in Fig. 9, may be taken as supporting the use 
of an effective Fourier potential, dependent on the 
excitation error of the simultaneously excited beam, 
in a two beam treatment. 

The dashed curves for 7 ~  contrast in Fig. 8 were 
calculated for opposite sign of VT~i corresponding to 
P <  0. The effect of this change in sign is seen to be 
a reversal of the contrast anomalies with respect to 
the 511 line. 

Introduction of more beams in the calculations, e.g. 
4g-4 and 511, gave only small effects on the contrast 
profiles. 

The contrast variation along the 97J line in Fig. 1 
is explained in a similar way. This line is not split 
at the intersection with 511. Calculations in which 
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the sizes of the potentials were varied showed this to 
be due to the strength of the 48"-4 reflexion relative to 
973. 

Of the multiple-beam effects in Fig.2 we present 
some calculations concerning the central part of Fig. 3. 
In this case To (Fig. 6) can be taken to represent the 
area near the 642,242, 800 triple intersection. Three- 
beam calculations were performed with g = 642, h = 242 
and g - h = 4 0 0 .  The relative values of the Fourier 
potentials in this case a r e  V642: V242" V400 ~--- - -  1" 1"25 : 8, 
P > 0. The sections/70 and Co in Fig. 6 are both normal 
to the ~ line and intersect this line outside the fi line, 
as indicated in the Figure. 

The calculated three-beam profiles given by heavy 
lines in Fig. 10 correspond to the sections indicated by 
B, and C., n=o,g ,h ,  in Fig.6. The enhancement of 
the + 642 lines outside the 242 and 400 bands seen in 
the profiles Co and C, agrees with the observed pattern. 

The weak tail of the diminished branch of the 6-~, 242 
hyperbola indicated by the calculated profile Cg could 
not be observed on the plates, possibly because of other 
contrast details in this region. In Ch the diminished 242 
profile and the strong 6--42' displaced line, correspond- 
ing to the enhanced 642 segment, are in qualitative 
agreement with the observations in Fig. 2. 

The effect of four-beam interactions, i.e. including 
800, can be seen from the dashed curves in Fig. 10. 
800 has some influence on both the position and line 
width in Cg and Ch, making the enhanced and displaced 
line segments more pronounced. The large difference 
between three- and four-beam profiles in Fig. 10(a) is 
a result of the 800 deficient profile. The 800 excess 
profile is not shown. 

In the sections B. the three-beam treatment breaks 
down completely, as can be seen in the contrast profiles 
in Fig. 10. The contrast of those branches of the 242, 
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Fig. 8. Calculated contrast profiles An, Bn, Cn, n = o,g,h (Fig. 5), corresponding to the encircled areas of Fig. 1, P > 0. K and K" 
denote geometrical positions of the Kikuchi line and displaced line, respectively. (a) Deficient contrast profiles, n =  o. (b) 24"2 
excess profiles, n = h .  (c) 73--] excess profiles, n = g .  The dashed curves correspond to P < 0 ;  dotted curve: two-beam profile. 
(d) Calculated dispersion surface. 
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642' and 6-42,2-42' hyperbolae, which according to the 
three-beam calculations should be strongly enhanced, 
is seen to vanish almost completely through four-beam 
interactions. The effects on the dispersion surface, 
Fig. 10(d), are also drastic, the corresponding gap 
becoming very small. This four-beam effect can be 
seen in Fig.2 as a disappearance of contrast between 
the 6"~ line and 242' displaced line near the inter- 
section with the 400 line, and similarily between the 
24---2 line and 6--~' displaced line near the 400 line. 
Adding further beams, e.g. 400 and 4-84, in the cal- 
culation had little influence on the profiles in Fig. 10. 

Conclusions 

A number of multiple-beam effects in Kikuchi patterns 
were studied in the present work, particularly enhance- 
ment and reduction of line contrast. Most of the cases 
could be explained, at least in their broad features, from 
three-beam interactions. 

An important aspect of Kikuchi line studies is the 
insight one obtains into dynamic effects to be expected 
in other electron diffraction techniques. In particular, 
because of the wide range of diffraction conditions 
recorded in one exposure and the elimination of thick- 
ness oscillations, such patterns give a very useful 
picture of the angular extent of the most important 
dynamic interactions. The wide applicability found 
here of three-beam considerations appears to support 
the use of 'dynamic' or 'effective' potential methods 
(Bethe, 1928; Gjonnes, 1962; Hall & Hirsch, 1965) 
which are derived from three-beam interactions. 

However, our studies have been aimed at explaining 
gross features rather than obtaining high accuracies. 
Further, interactions in densely populated reciprocal 
lattice planes have not been analysed in detail. In such 
cases a large number of interacting beams must be 
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Fig. 9. Calculated contrast in the three-beam case as a function 
of the perturbed two beam gap corresponding to sections 
of the type An and C,, in Figs. 5 and 8. 

included, even in an approximate description; three 
beam considerations will then be of limited value. 

Thus, for an approximate description of dynamic 
interactions on a weak or moderate reflexion, the 
diffraction conditions may conveniently be divided in 
three types: 

(1) Incident beam near a principal zone axis; here 
many beams are needed, even for an approximate 
treatment. The Kikuchi pattern appears with very 
complicated and often feeble contrast. 

(2) Regions where the incident or diffracted beam 
is fairly close to the Bragg condition for one strong 
reflexion. Here three-beam interactions often give a 
satisfactory description. Such regions are easy to iden- 
tify in Kikuchi patterns. 

(3) Two-beam regions, with no strong coupling to 
other beams and no anomaly in the Kikuchi line con- 
trast. 

As is evident from the reproduced patterns, the 
three-beam regions can be quite extensive; large effects 
on line contrast - and hence on integrated intensity 
and extinction distance - are often found at consider- 
able deviations from the Bragg condition for a stronger 
reflexion. Actually, the effect on Kikuchi line contrast 
has its maximum at some distance from the exact 
Bragg condition for a simultaneous reflexion. At the 
Bragg condition, i.e. the condition studied by Hall 
(1966), the line contrast may be only slightly different 
from the two beam value, the main effect being a 
displacement of the line, corresponding to a change 
in the angular condition for maximum intensity of the 
weak reflexion. Frequently, a split line occurs at the 
intersection, corresponding to the doubly peaked 
rocking curve calculated by Hall. 

The strong enhancement or reduction of line contrast 
occurring at the two sides of a stronger line depends 
on the sign of the Fourier potentials involved as well 
as on the sign of the excitation error for the strong 
reflexion. Hence the three-beam effects can be used to 
obtain sign relations between structure factors, e.g. 
for reflexions belonging to a layer line. 

The three-beam effects will be most pronounced on 
the weakest reflexion. However, the enhancement or 
reduction of a weak beam will be accompanied by a 
corresponding reduction or enhancement in the strong 
beam. In this way an apparent absorption resulting from 
weak beams may occur. Especially at some deviation 
from the strong beam Bragg condition, this effect can 
be appreciable, even for a quite far out reflexion with 
a small Fourier potential. Great care should therefore 
be exercised when microscope contrast or intensity 
distributions are interpreted in the two-beam approx- 
imation. The Kikuchi pattern may serve as a useful 
guide to conditions approximating two beams. 
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